THE NUTLEY WATER DEPARTMENT

The Nutley Water Department routinely monitors for contaminants in your drinking water according to federal and state laws. These contaminants can be naturally occurring or may have been caused by human activity. The Nutley Water Department has completed and issued the Source Water Assessment Report, which covers the period from January 1, 2008 thru December 31, 2008. As water travels over the land or underground, it can pick up substances or contaminants such as radionuclides, organic chemicals, and radioactive waste. All drinking water including bottled or drinking water may be naturally expected to contain some level of contaminants. It is important to remember that the presence of these contaminants does not necessarily pose a health risk.

For the year 2008, Passaic Valley Water Commission (PVWC) did all the required testing of our water supply. The Township of Nutley in 2008 sampled and tested eight areas throughout the Township for:
- Coliforms
- Lead and Copper (tested in September 2008)
- Iron and Manganese (results posted by the State in 2001)
- Trihalomethanes

In order to insure that tap water is safe to drink, EPA prescribe regulations that limit the amount of contaminants that may be present in drinking water. These regulations are based on scientific data and include tests for contaminants which are known or suspected to cause adverse health effects. The standards are based on the lethal dose of a contaminant in an animal, and the amount that would have a probability of causing a health effect in one person in a billion. These standards are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water per day at the MCL, levels for a lifetime to have a one-in-a-million chance of incurring the health effect described.

For more information about contaminants and potential health effects, call the EPA Safe Drinking Water Hotline 1-800-426-4791.

The NJDEP has completed and issued the Source Water Assessment Program can be obtained by logging onto NJDEP’s source water assessment website at www.state.nj.us/dep/swap or by contacting the Bureau of Safe Drinking Water at 1-609-292-5550.

The source water of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases radioactive waste. In order to assure that tap water is safe to drink, the EPA prescribes standards for contaminants in public water systems. The standards for these contaminants are based on scientific data and include tests for contaminants which are known or suspected to cause adverse health effects. These standards are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water per day at the MCL, levels for a lifetime to have a one-in-a-million chance of incurring the health effect described.

Water Quality Report

THE NUTLEY WATER DEPARTMENT FACTUAL INFORMATION

United States Environmental Protection Agency (USEPA) regulations require that all public water systems issue an annual Water Quality Report. The intent of this regulation is to inform consumers about the source and quality of their drinking water, and to assemble information in a user-friendly format. This report, in accordance with Nutley Water Department, is called Drinky Water Regulations.

The purpose of this report is to provide to the public information on the source of their drinking water, how this water gets to each of the public water systems, what some of the contaminants in the drinking water may be, and how the contaminants are removed from the water in our town and how their levels compare to the state and federal drinking water regulations.

The Water Department is a division within the Department of Public Utilities, and strives to operate water systems in a manner required by local and state regulations and to provide water to each customer that is safe and of satisfactory quality.

This is the tenth annual report on the quality of water delivered by the Township of Nutley. It meets the Federal Safe Drinking Water Act (SWDA) requirement for the “Consumer Confidence Rule” (CCR). The report includes information on our water, our treatments, and the health risks associated with any contaminants.

The Township of Nutley is committed to provide our customers and the community with high quality drinking water and to provide appropriate means to lessen the risk of infection with waterborne diseases. The Water Department is a division within the Department of Public Utilities, and operates solely on revenues received for the services rendered. This means tax dollars are not used to operate the Water Department.

In order to ensure that tap water is safe to drink, EPA prescribes standards which limit the amount of contaminants in drinking water provided by public water systems. Food and Drug Administration regulations require that bottled water which is to be consumed by people without cooking must provide the same protection for public health.

VULNERABLE POPULATION LANGUAGE 40 CFR 141.15A

SOME PEOPLE MAY BE MORE VULNERABLE TO CONTAM-

INANTS IN DRINKING WATER THAN THE GENERAL POPULATION.

IMMUNOCOMPROMISED PERSONS (including persons with CANCER UNDERGOING CHEMO-THERAPY, PERSONS WHO HAVE UNDERGONE ORGAN TRANSPLANTS, AND PERSONS WITH HIV/AIDS) OR OTHER IMMUNE SYSTEM DISORDERS, SOME ELDERLY AND SOME INFANTS MAY BE MORE VULNERABLE TO SOME HEALTH RISKS. THESE PEOPLE SHOULD SEEK ADVICE ABOUT DRINKING WATER FROM THEIR HEALTH CARE PROVIDERS. GROUP DISCUSSIONS ON APPROPRIATE MEANS TO LESSEN THE RISK OF INFECTION WITH CYTOMEGALOVIRUS AND OTHER MICROBIOLOGICAL CON-

TAMINANTS ARE AVAILABLE FROM THE SAFE DRINKING WATER HOTLINE 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases radioactive waste. In order to assure that tap water is safe to drink, the EPA prescribes standards for contaminants in public water systems. The standards for these contaminants are based on scientific data and include tests for contaminants which are known or suspected to cause adverse health effects. These standards are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water per day at the MCL, levels for a lifetime to have a one-in-a-million chance of incurring the health effect described.

For more information about contaminants and potential health effects, call the EPA Safe Drinking Water Hotline 1-800-426-4791.

CURRENT WATER ISSUES

The NJDEP has compiled and issued the Source Water Assessment Report and Summaries for these public water systems, included in this report. Further information on the Source Water Assessment Program can be obtained by logging onto NJDEP’s source water assessment website at www.state.nj.us/dep/swap or by contacting the Bureau of Safe Drinking Water at 1-609-292-5550.

SPECIAL CONSIDERATIONS REGARDING CHILDREN, PREGNANT WOMEN, NURSING MOTHERS, AND OTHERS

Children drink a much higher volume of water compared to a person’s adulthood, on a weight basis because they grow at a greater rate. However, if a young child ingests a larger volume of water due to this reason, reproductive or developmental effects are used for calculating a drinking water standard, such as inulin at low levels than those other health effects of concern. If there is insufficient toxicity information for a chemical (for example, lack of data on reproductive or developmental effects), an extra uncertainty factor may be incorporated into the calculation of the drinking water standard, if these effects occur at lower levels than other health effects of concern. If there is insufficient toxicity information for a chemical (for example, lack of data on reproductive or developmental effects), an extra uncertainty factor may be incorporated into the calculation of the drinking water standard, if these effects occur at lower levels than other health effects of concern.

In order to assure that tap water is safe to drink, EPA prescribes standards which limit the amount of contaminants in drinking water provided by public water systems. Food and Drug Administration (FDA) regulations require that bottled water which is to be consumed by people without cooking must provide the same protection for public health.

In order to ensure that tap water is safe to drink, EPA prescribes standards which limit the amount of contaminants in drinking water provided by public water systems. Food and Drug Administration regulations require that bottled water which is to be consumed by people without cooking must provide the same protection for public health.

In order to assure that tap water is safe to drink, EPA prescribes standards which limit the amount of contaminants in drinking water provided by public water systems. Food and Drug Administration (FDA) regulations require that bottled water which is to be consumed by people without cooking must provide the same protection for public health.
A State Review of Potential Contaminants Sources Near Newark Water Drinking System

Contaminants MCLG MCL PVWC NJDWSC UWJC NEWARK NUTLEY TYPICAL SOURCE COMMENTS:

- DEP may customize (change existing) monitoring schedules based on the susceptibility ratings for ground water than surface water. As a result, surface water intakes’ susceptibility to radionuclides (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased system consisting of 0 wells, 0 wells under the influence of surface water, 5 surface water intakes(s), 0

Newark Water Department is a public community water system consisting of 0 wells, 0 wells under

contaminants. The contaminant categories are explained, along with a summary of

- Identifying the area (known as the source water assessment area) that supplies

• asbestos in drinking water samples collected in 2002. UWJC exceeded the state upper recommended limit for Aluminum, Iron, Radon, and Radium(228 pCi/L). Additional information can be found at http://www.epa.gov/region3/health/index.html

MCLG = Maximum Contaminant Level Goal, a non-regulatory level of a contaminant which, if exceeded, indicates a potential threat to public health. MCL = Maximum Contaminant Level, the highest level of a contaminant that is allowed in drinking water. MRDL = Maximum Residual Disinfectant Level; the highest level of a disinfectant allowed in drinking water. MRDLG = Maximum Residual Disinfectant Level Goal, a non-regulatory level of a disinfectant which, if exceeded, indicates a potential threat to public health.

THE SAFE DRINKING WATER HOTLINE OR AT http://www.epa.gov/safewater/lead.

Inorganic Contaminants:

- Materials and water hardness levels.

- Chlorine) used to kill pathogens react with dissolved organic material (for example leaves) and provide a medium for microbial growth. Turbidity may indicate the presence of

- for Manganese. The recommended upper limit for Manganese is based on staining of

- increase in surface water.

- drinking or cooking. IF YOU ARE CONCERNED ABOUT LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND

- hardness (as CaCO3, mg/L) in

- hardness, pH and available to destroy

- from metal refineries and treated to remove dissolved solids and other impurities associated with the pathogen. 4

- Discharge from metal refineries

- that can cause symptoms such as nausea, cramps, diarrhea and associated

- corrosion of household

- provides a medium for microbial growth. Turbidity may indicate the presence of

- Hardness (as CaCO3, mg/L) in

- and available to destroy disease causing organisms. Disinfection byproducts are formed when the disinfectants (usually

- Chlorine) used to kill pathogens react with dissolved organic material (for example leaves) and provide a medium for microbial growth. Turbidity may indicate the presence of

- for Manganese. The recommended upper limit for Manganese is based on staining of

- increase in surface water.

- drinking or cooking. IF YOU ARE CONCERNED ABOUT LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND

- hardness (as CaCO3, mg/L) in

- hardness, pH and available to destroy

- from metal refineries and treated to remove dissolved solids and other impurities associated with the pathogen. 4

- Discharge from metal refineries

- that can cause symptoms such as nausea, cramps, diarrhea and associated

- corrosion of household

- provides a medium for microbial growth. Turbidity may indicate the presence of

- Hardness (as CaCO3, mg/L) in

- and available to destroy disease causing organisms. Disinfection byproducts are formed when the disinfectants (usually

- Chlorine) used to kill pathogens react with dissolved organic material (for example leaves) and provide a medium for microbial growth. Turbidity may indicate the presence of

- for Manganese. The recommended upper limit for Manganese is based on staining of

- increase in surface water.

- drinking or cooking. IF YOU ARE CONCERNED ABOUT LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND

- hardness (as CaCO3, mg/L) in

- hardness, pH and available to destroy

- from metal refineries and treated to remove dissolved solids and other impurities associated with the pathogen. 4

- Discharge from metal refineries

- that can cause symptoms such as nausea, cramps, diarrhea and associated

- corrosion of household

- provides a medium for microbial growth. Turbidity may indicate the presence of

- Hardness (as CaCO3, mg/L) in

- and available to destroy disease causing organisms. Disinfection byproducts are formed when the disinfectants (usually

- Chlorine) used to kill pathogens react with dissolved organic material (for example leaves) and provide a medium for microbial growth. Turbidity may indicate the presence of

- for Manganese. The recommended upper limit for Manganese is based on staining of

- increase in surface water.

- drinking or cooking. IF YOU ARE CONCERNED ABOUT LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND

- hardness (as CaCO3, mg/L) in

- hardness, pH and available to destroy

- from metal refineries and treated to remove dissolved solids and other impurities associated with the pathogen. 4

- Discharge from metal refineries

- that can cause symptoms such as nausea, cramps, diarrhea and associated

- corrosion of household

- provides a medium for microbial growth. Turbidity may indicate the presence of

- Hardness (as CaCO3, mg/L) in

- and available to destroy disease causing organisms. Disinfection byproducts are formed when the disinfectants (usually

- Chlorine) used to kill pathogens react with dissolved organic material (for example leaves) and provide a medium for microbial growth. Turbidity may indicate the presence of

- for Manganese. The recommended upper limit for Manganese is based on staining of

- increase in surface water.

- drinking or cooking. IF YOU ARE CONCERNED ABOUT LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND

- hardness (as CaCO3, mg/L) in

- hardness, pH and available to destroy

- from metal refineries and treated to remove dissolved solids and other impurities associated with the pathogen. 4

- Discharge from metal refineries

- that can cause symptoms such as nausea, cramps, diarrhea and associated

- corrosion of household

- provides a medium for microbial growth. Turbidity may indicate the presence of

- Hardness (as CaCO3, mg/L) in

- and available to destroy disease causing organisms. Disinfection byproducts are formed when the disinfectants (usually

- Chlorine) used to kill pathogens react with dissolved organic material (for example leaves) and provide a medium for microbial growth. Turbidity may indicate the presence of

- for Manganese. The recommended upper limit for Manganese is based on staining of

- increase in surface water.

- drinking or cooking. IF YOU ARE CONCERNED ABOUT LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND

- hardness (as CaCO3, mg/L) in

- hardness, pH and available to destroy

- from metal refineries and treated to remove dissolved solids and other impurities associated with the pathogen. 4

- Discharge from metal refineries

- that can cause symptoms such as nausea, cramps, diarrhea and associated

- corrosion of household

- provides a medium for microbial growth. Turbidity may indicate the presence of

- Hardness (as CaCO3, mg/L) in

- and available to destroy disease causing organisms. Disinfection byproducts are formed when the disinfectants (usually

- Chlorine) used to kill pathogens react with dissolved organic material (for example leaves) and provide a medium for microbial growth. Turbidity may indicate the presence of

- for Manganese. The recommended upper limit for Manganese is based on staining of

- increase in surface water.

- drinking or cooking. IF YOU ARE CONCERNED ABOUT LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND

- hardness (as CaCO3, mg/L) in

- hardness, pH and available to destroy

- from metal refineries and treated to remove dissolved solids and other impurities associated with the pathogen. 4

- Discharge from metal refineries

- that can cause symptoms such as nausea, cramps, diarrhea and associated

- corrosion of household

- provides a medium for microbial growth. Turbidity may indicate the presence of

- Hardness (as CaCO3, mg/L) in

- and available to destroy disease causing organisms. Disinfection byproducts are formed when the disinfectants (usually

- Chlorine) used to kill pathogens react with dissolved organic material (for example leaves) and provide a medium for microbial growth. Turbidity may indicate the presence of

- for Manganese. The recommended upper limit for Manganese is based on staining of

- increase in surface water.

- drinking or cooking. IF YOU ARE CONCERNED ABOUT LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND

- hardness (as CaCO3, mg/L) in

- hardness, pH and available to destroy